Postgraduate SWI-STA80007-2018
Bayesian Statistics
Calculate and apply your understanding of Bayesian statistical modelling. Figure out a sum of estimation techniques. Account for estimation differences. Assess the importance of Markov Chain Monte Carlo simulation in Bayesian analysis.
Enrolments for this year have closed. Keep exploring subjects.
Study method
100% online
Available loans
- FEE-HELP
Assessments
Subjects may require attendance
Prior study
Required
Swinburne University of Technology leads the way with innovative and new ways of teaching, learning and thinking. It offers a wide range of study options, from pre-apprenticeships, undergraduate, postgraduate and PhDs, including online degrees with Open Universities Australia. Swinburne is known for career-oriented education and encouraging lifelong learning.
QS RANKING 2021
20
Times Higher Education Ranking 2021
25
Subject details
Students who successfully complete this subject will be able to:
- Differentiate important distributions commonly used in Bayesian Statistic
- Defend the importance of concepts such as Prior Distributions and Posterior Distributions in Bayesian Statistical Modeling
- Describe the importance of Markov Chain Monte Carlo simulation in Bayesian Analysis
- Develop programming capabilities to perform Bayesian analysis
- Evaluate empirical applications of Bayesian analysis in an appropriate software environment
- Articulate the differences between Bayesian estimation and maximum likelihood estimation
- Argue the merits of Bayesian methodology.
-
- Bayes theorem and the concept of Bayesian statistics
- Distributions often used in Bayesian statistics
- Prior distributions, likelihood functions, and posterior distributions
- Bayesian estimation and model fitting using appropriate software
- Differences between Bayesian estimation and maximum likelihood estimation
- Choice of prior distribution
- Empirical Bayes estimation
- Bayesian hierarchical models
- Empirical applications of Bayesian analysis using appropriate software
You must have successfully completed the following subject(s) before starting this subject:
SWI-STA60003-Basic Statistical Computing Using R, or SWI-HMS772 ;
Special requirements
No special requirements
The subject introduces the fundamentals of Bayesian statistical modelling. Students will learn the importance of subjective beliefs in Bayesian statistics. Important concepts such as prior distributions, likelihood functions, and posterior distributions will be discussed at length. Numerical estimation techniques, such as Metropolis-Hastings and Gibbs sampling, will be introduced. Empirical applications of Bayesian analysis will be performed in an R software environment.
Please note: assessment values are indicative only, details will be advised at the start of the subject.
- Assignments — 2 (40%)
- Invigilated Exam (50%)
- Quizzes — Online (10%)